|
|
Pick-up Series |
Pick-up Parallel |
Pick-up LCL |
|
`\(Q_{(op)}\)` |
`\( \omega L_{st} \div R_L \)` |
`\( R_L \div \omega L_{st} \)` |
`\( R_L \div \omega L_{st} \)` |
|
`\(P_{o}\)` |
`\( k^2 \mathit{VA_{pt}} Q_{(op)} \)` |
`\( k^2 \mathit{VA_{pt}} Q_{(op)} \)` |
`\( k^2 \mathit{VA_{pt}} Q_{(op)} \)` |
|
`\(Z_{s}\)` |
`\(R_{L}\)` |
`\( \left( j \omega L_{st} + R_L \right) \div \left( 1 + Q_{(op)}^2 \right) \)` |
`\( \omega^2 L_{si}^2 \div R_{L}\)` |
Primary Series |
`\(Z_{p}\)` |
`\( \omega^2 M^2 \div R_{L}\)` |
`\( \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \div \left( j \omega L_{st} + R_L \right) \)` |
`\( \omega^2 M^2 R_{L} \div \omega^2 L_{si}^2 \)` |
`\(I_{pi}\)` |
`\( V_{pi} R_{L} \div \omega^2 M^2 \)` |
`\( V_{pi} \left( j \omega L_{st} + R_L \right) \div \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \)` |
`\( V_{pi} \omega^2 L_{si}^2 \div \omega^2 M^2 R_{L}\)` |
`\(I_{pt}\)` |
`\( V_{pi} R_{L} \div \omega^2 M^2 \)` |
`\( V_{pi} \left( j \omega L_{st} + R_L \right) \div \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \)` |
`\( V_{pi} \omega^2 L_{si}^2 \div \omega^2 M^2 R_{L}\)` |
Primary LCL |
`\(Z_{p}\)` |
`\( \omega^2 L_{pi}^2 R_L \div \omega^2 M^2 \)` |
`\( \omega^2 L_{pi}^2 \left( j \omega L_{st} + R_L \right) \div \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \)` |
`\( \omega^4 L_{pi}^2 L_{si}^2 \div \omega^2 M^2 R_L \)` |
`\(I_{pi}\)` |
`\( V_{pi} \omega^2 M^2 \div \omega^2 L_{pi}^2 R_L \)` |
`\( V_{pi} \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \div \omega^2 L_{pi}^2 \left( j \omega L_{st} + R_L \right) \)` |
`\( V_{pi} \omega^2 M^2 R_L \div \omega^4 L_{pi}^2 L_{si}^2 \)` |
`\(I_{pt}\)` |
`\(V_{pi} \div j \omega L_{pi} \)` |
`\(V_{pi} \div j \omega L_{pi} \)` |
`\(V_{pi} \div j \omega L_{pi} \)` |
![]() |
![]() |
![]() |
![]() |
![]() |
---
name: S52
# Example: Design of a 2kW IPT System
Both the primary and the pick-up coils designed for a 2kW IPT system, when placed `\(100 mm\)` apart measure `\(18.73 \mu H\)`. `\(k\)` between the two coils is measured as 10%. The Q of the primary coil is about 400 while the Q of the pick-up is about 200 (core losses ignored). The primary uses LCL compensation and is energised using a `\(400 V_{rms}\)` sinusoidal voltage source, `\(V_{pi}\)`, that has a frequency of `\(85 \mathit{kHz}\)`. The pick-up also uses LCL compensation and deliver `\(2 kW\)` at `\(200 V_{rms}\)` to an AC load. Determine the circuit parameters and using LTSpice validate the design.
.left-column[
- For maximum coil-coil efficiency, show that `\(\mathit{VA_{pt}}=28.28kVA\)` and `\(\mathit{VA_{st}}=14.14kVA\)`
- Show that `\(L_{pi} = 14.09 \mu H\)`, `\(C_{pt} = 248.9 nF\)` and `\(C_{pi} = 754.8 \mu H\)`
- Show that `\(L_{si} = 9.96 \mu H\)`, `\(C_{st} = 352.0 nF\)` and `\(C_{si} = 399.8 \mu H\)`
- With the aid of a simulation model show that
- `\(P_{o} \approx 2 kW\)` and `\(\eta \approx 93.2 \% \)` as mathematically predicted
]
.right-column[
.center[