|
|
Secondary Series |
Secondary Parallel |
Secondary LCL |
|
`\(Q_{(op)}\)` |
`\( \omega L_{st} \div R_L \)` |
`\( R_L \div \omega L_{st} \)` |
`\( R_L \div \omega L_{st} \)` |
|
`\(P_{o}\)` |
`\( k^2 \mathit{VA_{pt}} Q_{(op)} \)` |
`\( k^2 \mathit{VA_{pt}} Q_{(op)} \)` |
`\( k^2 \mathit{VA_{pt}} Q_{(op)} \)` |
|
`\(Z_{s}\)` |
`\(R_{L}\)` |
`\( \left( j \omega L_{st} + R_L \right) \div \left( 1 + Q_{(op)}^2 \right) \)` |
`\( \omega^2 L_{si}^2 \div R_{L}\)` |
Primary Series |
`\(Z_{p}\)` |
`\( \omega^2 M^2 \div R_{L}\)` |
`\( \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \div \left( j \omega L_{st} + R_L \right) \)` |
`\( \omega^2 M^2 R_{L} \div \omega^2 L_{si}^2 \)` |
`\(I_{pi}\)` |
`\( V_{pi} R_{L} \div \omega^2 M^2 \)` |
`\( V_{pi} \left( j \omega L_{st} + R_L \right) \div \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \)` |
`\( V_{pi} \omega^2 L_{si}^2 \div \omega^2 M^2 R_{L}\)` |
`\(I_{pt}\)` |
`\( V_{pi} R_{L} \div \omega^2 M^2 \)` |
`\( V_{pi} \left( j \omega L_{st} + R_L \right) \div \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \)` |
`\( V_{pi} \omega^2 L_{si}^2 \div \omega^2 M^2 R_{L}\)` |
Primary LCL |
`\(Z_{p}\)` |
`\( \omega^2 L_{pi}^2 R_L \div \omega^2 M^2 \)` |
`\( \omega^2 L_{pi}^2 \left( j \omega L_{st} + R_L \right) \div \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \)` |
`\( \omega^4 L_{pi}^2 L_{si}^2 \div \omega^2 M^2 R_L \)` |
`\(I_{pi}\)` |
`\( V_{pi} \omega^2 M^2 \div \omega^2 L_{pi}^2 R_L \)` |
`\( V_{pi} \omega^2 M^2 \left( 1 + Q_{(op)}^2 \right) \div \omega^2 L_{pi}^2 \left( j \omega L_{st} + R_L \right) \)` |
`\( V_{pi} \omega^2 M^2 R_L \div \omega^4 L_{pi}^2 L_{si}^2 \)` |
`\(I_{pt}\)` |
`\(V_{pi} \div j \omega L_{pi} \)` |
`\(V_{pi} \div j \omega L_{pi} \)` |
`\(V_{pi} \div j \omega L_{pi} \)` |
![]() |
![]() |
![]() |
![]() |
![]() |
---
name: S48
# Example: LCL-Parallel Compensated System
When placed `\(100 mm\)` apart the primary and pick-up coils of an IPT system each measures `\(18.73 \mu H\)`. `\(k\)` between the two coils is measured as 10%. The primary uses LCL compensation and is energised using a sinusoidal voltage source, `\(V_{pi}\)`, that has a frequency of `\(85 \mathit{kHz}\)`. The pick-up uses parallel compensation and deliver `\(50 W\)` to a `\(50 \Omega \)` AC load.
.left-column[
- Show that `\(C_{pt}\)` has to be `\(187.2 nF\)` and `\(L_{pi}\)` has to be `\(18.73 \mu H\)`
- Show that `\(V_{pi}\)` has to be `\(\sim 100 V_{rms}\)` to transfer `\(50 W\)`
- Develop a simulation model in LTSpice
- `\(L_{pi}\)` can be added a `\(50 m \Omega\)` ESR to help reach SS faster
- With the aid of this model show that
- `\(P_{o} \approx 50W\)`
- `\(V_{pi}\)` sees a slightly inductive load
]
.right-column[
.center[